Active query forwarding in sensor networks
نویسندگان
چکیده
While sensor networks are going to be deployed in diverse application specific contexts, one unifying view is to treat them essentially as distributed databases. The simplest mechanism to obtain information from this kind of a database is to flood queries for named data within the network and obtain the relevant responses from sources. However, if the queries are (a) complex, (b) one-shot, and (c) for replicated data, this simple approach can be highly inefficient. In the context of energy-starved sensor networks, alternative strategies need to be examined for such queries. We propose a novel and efficient mechanism for obtaining information in sensor networks which we refer to as ACtive QUery forwarding In sensoR nEtworks (ACQUIRE). The basic principle behind ACQUIRE is to consider the query as an active entity that is forwarded through the network (either randomly or in some directed manner) in search of the solution. ACQUIRE also incorporates a look-ahead parameter d in the following manner: intermediate nodes that handle the active query use information from all nodes within d hops in order to partially resolve the query. When the active query is fully resolved, a completed response is sent directly back to the querying node. We take a mathematical modelling approach in this paper to calculate the energy costs associated with ACQUIRE. The models permit us to characterize analytically the impact of critical parameters, and compare the performance of ACQUIRE with respect to other schemes such as flooding-based querying (FBQ) and expanding ring search (ERS), in terms of energy usage, response latency and storage requirements. We show that with optimal parameter settings, depending on the update frequency, ACQUIRE obtains order of magnitude reduction over FBQ and potentially over 60–75% reduction over ERS (in highly dynamic environments and high query rates) in consumed energy. We show that these energy savings are provided in trade for increased response latency. The mathematical analysis is validated through extensive simulations. 2003 Elsevier B.V. All rights reserved.
منابع مشابه
EEQR: An Energy Efficient Query-Based Routing Protocol for Wireless Sensor Networks
Routing in Wireless Sensor Networks (WSNs) is a very challenging task due to the large number of nodes, their mobility and lack of proper infrastructure. Since the sensors are battery powered devices, energy efficiency is considered as one of the main factors in designing routing protocols in WSNs. Most of energy-aware routing protocols are mere energy savers that attempt to decrease the energy...
متن کاملEEQR: An Energy Efficient Query-Based Routing Protocol for Wireless Sensor Networks
Routing in Wireless Sensor Networks (WSNs) is a very challenging task due to the large number of nodes, their mobility and lack of proper infrastructure. Since the sensors are battery powered devices, energy efficiency is considered as one of the main factors in designing routing protocols in WSNs. Most of energy-aware routing protocols are mere energy savers that attempt to decrease the energy...
متن کاملEnergy Efficiency and Reliability in Underwater Wireless Sensor Networks Using Cuckoo Optimizer Algorithm
Energy efficiency and reliability are widely understood to be one of the dominant considerations for Underwater Wireless Sensor Networks (UWSNs). In this paper, in order to maintain energy efficiency and reliability in a UWSN, Cuckoo Optimization Algorithm (COA) is adopted that is a combination of three techniques of geo-routing, multi-path routing, and Duty-Cycle mechanism. In the proposed alg...
متن کاملRouting Hole Handling Techniques for Wireless Sensor Networks: A Review
A Wireless Sensor Network consists of several tiny devices which have the capability to sense and compute the environmental phenomenon. These sensor nodes are deployed in remote areas without any physical protections. A Wireless Sensor Network can have various types of anomalies due to some random deployment of nodes, obstruction and physical destructions. These anomalies can diminish the sensi...
متن کاملBi-filtered Forwarding: a Quasi-optimal Routing Algorithm for Query Delivery in Wireless Sensor Networks
A quasi-optimal query propagation algorithm Bi-Filtered Forwarding (BFF) for quickly routing a query throughout a wireless sensor network is proposed in this paper. BFF is implemented in a limited flooding manner for guaranteeing quick query propagation and low message consumption in wireless sensor networks. The experimental results show that in comparison with the flooding algorithm, BFF can ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ad Hoc Networks
دوره 3 شماره
صفحات -
تاریخ انتشار 2005